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LETTER TO THE EDITOR 

A new RG approach to site percolation in two dimensions 

P D Gujratit 
Department of Physics, Columbia University, New York, NY 10027, USA 

Received 19 August 1980 

Abstract. A renormaiisation group transformation is developed for two-dimensional 
site-percolation problems by using a scaling transformation in real space. A transition 
matrix A is defined for each cell, and the renormalised probability p ’ ( p )  of occupation of the 
cell is identified with the dominant eigenvalue R l ( p )  of the transition matrix. A simple RG 
transformation has been applied on the square lattice up to cells of size 6 x 6 and the results 
for critical probability p c  and exponent v are given. A modified RG has been applied to the 
three planar lattices, and p c  and v have been calculated for the simplest choice of the cells. 
The modified RG transformation seems to yield better results as the coordination number of 
the lattice increases. 

In recent years, there has been a tremendous amount of research activity related to 
percolation problems (Essam 1972, Shante and Kirkpatrick 197 1). Most interesting 
among these problems are the calculations of the critical exponents and the critical 
probability. We will attempt here to develop a new RG approach and estimate the 
critical probability p c  and the critical exponent v. The approach is to use a scaling 
procedure in a real space (Young and Stinchcombe 1975, Stinchcombe and Watson 
1976, Kirkpatrick 1977, Reynolds et a1 1977,1978, Sarychev 1977, Yuge and Murase 
1978) based on the original ideas of Niemeijer and van Leeuwen (1976) but developed 
in the context of the percolation problem by Stinchcombe and co-workers. The point of 
view of the above work is that the principal effect of rescaling length is to modify p ,  the 
probability of occupation, and that the critical probability can be identified as a fixed 
point of this transformation of p .  We take the same point of view and develop a method 
to determine this transformation law of p .  This transformed probability p ’ ( p )  is some 
‘effective’ probability of occupation of the cell. The definition of p ’ ( p )  is arrived at by 
considering connections that ensure the occurrence of infinite clusters of occupied sites. 
Our approach is to define a transition matrix A ( p ) ,  and p ’ ( p )  is identified with the 
dominant eigenvalue Rl(p)  of A(p) .  This eigenvalue Rl(p)  (and therefore p ’ ( p ) )  has 
the property that it lies between 0 and 1, and that as the cell size increases, it tends to 
zero for p <pc  and rises sharply at p just above p c  to unity (figure 2). 

For the sake of clarity, we consider a simple square lattice, but the theory is 
applicable to any lattice. Consider a 2 x 2 cell C and the nearest-neighbour sites tl and 
t 2  of the neighbouring cell C1 (figure l(a)). Let li) and 11) denote any of the four possible 
states of tl and t2 and s1 and s2 respectively, and define the transition matrix A ( p )  with 
elements Aij 3 (jlAli) as follows. Ai, is the conditional probability that given a state li) 
of tl and t2, there are connecting paths of occupied sites between state li) and state 1 j )  (of 
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Figure 1. Simple RG on a square lattice. 
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Figure 2. R l ( p )  and the behaviour of the fixed point (simple RG). 

s1 and s2). For example, consider figure l ( b )  where the ‘in state’ l i )  is 10 X)  (the full 
circle 0 denotes an occupied site with probability p and the cross x denotes an 
unoccupied site with probability q = 1 - p )  and the ‘out state’ is 10 0). For this case, 
(0 .(AI0 X) = p 3  = probability that SI, s2 and s3 are all occupied. 

The matrix A ( p )  is given by 

s = p 2 + 2 p q  

\ o  0 0 o /  
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where the states 10 O), 10 X), IX 0) and IX X) are numbered from 1 to 4.  Let us 
introduce a periodic boundary srondition along the vertical direction on the f i x  fi 
square lattice. Then P, = Tr(AJN) ( N  + CO) denotes the probability of having connected 
paths of occupied sites along any vertical strip of cells C1, C, C2, . . . , etc. If P is the total 
probability that there are such paths on each strip, we have 

P=’Ir(AN)= ( R l ( p ) ) N  N + m  (1) 
where R l ( p )  is the dominant eigenvalue of A(p).  It is evident that A(p)  is a 
non-negative matrix and, therefore, according to the Perron-Frobenius theorem has a 
real and positive dominant eigenvalue (Gantmacher 1959). Now it is natural to identify 
R 1(  p )  as the ‘effective probability’ of occupation p ‘ (  p )  of the cell: 

P ’ ( P )  = Rib). (2) 

The fixed point p *  is given by 

P ’ ( P * )  = P* (3) 
and the critical index v (Wilson and Kogut 1974) by 

v = In b/R ’1 ( p * )  (4) 
where b is the length scale change and R ; ( p )  = a R l ( p ) / a p .  

The results for p :  and vn for n = 2, 3 , 4 , 5  and 6 ( n  x n is the size of the cell under 
transformation) are given in table 1. We note that the convergence of p :  towards 
P F )  - - 0.593 f 0.002 (Sykes and Glen 1976, Sykes et a1 1976a, b, c) is very poor. It is 
believed that v for d = 2 percolation problems is around 1-3  and therefore the 
convergence of v, towards v is also very slow. 

Table 1. Unidirectional RG on a square lattice. 

Cell size P* R ; ( P * )  Y 

2 x 2  0.734 1,560 1.559 
3 x 3  0.706 2.038 1.543 
4 x 4  0.688 2.480 1.526 
5 x 5  0,676 2,889 1317  
6 x 6  0.667 3.284 1.507 

In order to get better estimates of p c  and v, we consider the in states l i )  determined 
by the four sites tl, t2, f3  and t4 (figure 3(a)). There are 16 such states. The out states l j )  
are determined by the three sites sl, s:! and s3. We ‘mentally’ split the middle site s2 into 
two sites si and si (figure 3 ( b ) )  and define 

A.. = 0 if j E S  ( 5 )  

where S is the set of states of the four sites sl, si, s; and s3 in which si and s; are not in 
the same state. With l j )  now as any of the 16 states of sl, si, s; and s3 and with the 
restriction ( 5 )  on A, we define the matrix element Aij as follows. Aij is the conditional 
probability that given an in state l i )  = ~i1)C3~iz ) ,  there are connecting paths of occupied 
sites from either l i l )  or l i 2 )  or both to both I jl) and 1 j 2 )  ( l j )  = l j l ) 0 1 j 2 ) ) .  This definition of 
A ( p )  ensures that if such connections are allowed for each cell, then each cell is a part of 
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Figure 3. Modified KG on a square lattice: ( a )  in and out states; ( b )  splitting of the three out 
sites. 

some infinite cluster of occupied sites. To see this, we pick any arbitrary ‘occupied’ cell. 
We must have come into this cell through at least one of the two faces, one on the left 
and the other one at the bottom. If we follow this connection, we come to (at least one) 
another ‘occupied’ cell which in turn must lead to (at least one) another cell and so on. 
This implies the occurrence of an infinite cluster. (An ‘occupied’ cell is one which has 
connecting paths from li) to ti).) 

We will again identify p ’ ( p ) ,  the ‘effective’ probability of occupation of a cell, with 
the dominant eigenvalue R l ( p )  of A ( p )  (see equation (2)). Now, R l ( p )  is also the 
dominant eigenvalue of the truncated matrix A(p) ,  obtained by limiting li) and l j )  to the 
following states of Is1, s2, s3): 10 0 O), 10 0 x), I X  0 O), (0 x O), numbered from 1 to 4. 
(The matrix A has the block form 

and A is the truncated square matrix defined 
given by 

i P 3  P 2 4  P 2 4  P24\ 

1 P 3  P 2 4  P24 P 2 4  
P 3  P24 P 2 4  P24 
\P4 P34 P34 P34 
I A(P) = 

which are identical to the results obtained by 
different approach. 

above.) The transition matrix A(p)  is 

Yuge and Murase (1978), who used a 

We will now apply the above modified KG transformation on the hexagonal lattice. 
We take the four sites sl, s2, s3 and s4 to provide us with the basic cell on this lattice (see 
figure 4(a)). We will speak of these cells as ‘trishools’ (trishool is a Hindi word meaning 
three-pronged figures). The six sites t l ,  t2, t3 ,  t4, ts ,  t6 determine the in states. We split 
each of the four sites sl, sz, s3 and s4 into two ‘half-sites’ such that si, s2, s3, s;, s; and s i  
determine the out states (figure 4(b)). We again set the matrix element Aci equal to zero 
if l j )  is an out state in which the states of s2 and $ 4  and s3 and s; are not identical, 
respectively. The transition matrix A ( p )  from t sites to s sites can be obtained by the 
product of two matrices B and C ( A  = BC), where B is the transition matrix from the in 
states of the six t sites to the out states of the two sites u1 and u2 and C is the transition 
matrix between the U sites and the s sites. We again have to consider the truncated 
matrix A ( p )  by considering only those six out states of the s sites that contribute 
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Figure 4. 'Trishool' transformation on a hexagonal lattice: ( a )  in and out states; ( b )  splitting 
of the four out sites. 

non-zero matrix elements Cij and the three states of the U sites that contribute non-zero 
Bib The six states of (SI, SZ, s3, s4) are IOOOO), (..Ox), IX eo.), 1.0 X O), 
I@ x 0 0) and 10 x x 0). The three states of luJ, u2)  are 10 O), (0 X) and IX 0). The 
matrices B and C are given by 

2 

B ( p ) =  '"t P P 4  p; P 4  p,4 1 
P P 4 P 3 4  
P P 4 P 3 4  

P4 P 3 4  P 3 4  P34 P 3 4  p 2 q 2  
C ( p ) =  P 4  P34 0 P 3 4  P 3 4  P 2 q 2  1 c4 0 P34 P34 P34 p 2 q 2  

and 

A = BC. 

We find from these matrices that 

p" = 0.721 Y = 1.630. 

The value of p c  from series calculations (Essam 1972) is 

p c  = 0*70=k0*01 

and our result for p c  is not very unsatisfactory at the lowest size of the cell trans- 
formation. 

As the final example of the applicability of our RG transformation, we consider the 
triangular lattice (figure 5(a)) .  The set of t sites tl, f2,  t3 ,  t4, t5 and t6 define the in states 
and the split sites (figure 5 ( b ) )  sl, si, s2,  s; and s3, s; define the out states. The transition 
matrix elements A ,  are non-zero only for those out states that allow connecting paths 
through all the three faces defined by (sl, s2), (s2,  si) and (s3, si). This implies that at 
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Figure 5. Triangular cell transformation: ( a )  in and out states; ( b )  splitting of the three out 
sites. 

least two of the three sites sl, s2 and s3 must be occupied. The truncated matrix A is 
determined by the following four out states of I S I ,  s2, $3): 10 0 O), 10 X O), 10 0 X) and 
J X  0 0). It is easily seen that each row of A has the same sum, namely p 3  + 3p2q.  Thus, 

R i b )  = p 3  + 3 p 2 q  

(see also Reynolds et a1 1977) with 
p" =f 

( p c  = f exactly for the triangular lattice) and 

v =In  J3/ln ($) = 1.3548. 

Recent calculations for v have yielded the following values: 

v = 1.35 f 0.02 (Gaunt and Sykes 1976) 

and 

v = 1.356 f 0.015 (Reynolds et a1 1978) 

and our value for Y for the triangular lattice is in close agreement with the above 
calculations. Incidently, our results for the triangular lattice are exactly the same as 
those obtained by Reynolds et a1 (1977), even though the approaches are completely 
different. 

It must be evident that the results of our RG calculations improve as the coordination 
number of the lattice increases. They are worst for the hexagonal lattice and best for the 
triangular lattice. 

Finally, we conclude that our modified RG transformations have yielded 
encouraging results considering only the simplest possible choices of the cells have been 
made. Our transformations are not only more pictorial and closer to the actual physics, 
that is, the occurrence of infinite clusters, but also give a 'proper' meaning to the concept 
of effective probability of occupation of a cell. The ideas developed here can be applied 
to the bond problems as well, and also to three-dimensional lattices. 
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